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Notation

An inverse sequence 〈X∗, f∗〉 of topological spaces and
continuous maps, and its limit 〈X∞, fn,∞〉n∈ω:

X0
f0←− X1

f1←− X2
f2←−︸ ︷︷ ︸

f1,3

X3
f3←− · · ·Xn

fn←− Xn+1 ← · · ·︸ ︷︷ ︸
fn,∞

X∞

A category of compacta is any category K whose objects are
metrizable compacta and whose morphisms are continuous
maps. A sequence in K is an inverse sequence of K-objects
and K-maps.
σK denotes the category of all limits of sequences in K and
all limits of almost transformations between sequences in K.
I denotes the category with the only object I := [0, 1] and all
continuous surjections.
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Motivation

A continuum X is arc-like if it is the limit of a sequence in I:

I
f0

�− I
f1

�− I
f2

�− I
f3

�− · · · X .

So σI-objects are exactly the arc-like continua, and by
[Mardešić–Segal, 1963], σI-maps are all continuous surjections.
A compact Hausdorff space is hereditarily indecomposable if
for every subcontinua C ,D ⊆ X we have C ⊆ D or C ⊇ D or
C ∩ D = ∅.

Fact [Bing, 1951]

There exists a unique hereditarily indecomposable arc-like
continuum, called the pseudo-arc.

Fact [Irwin–Solecki, 2006]

The pseudo-arc is the quotient induced by a topological
model-theoretic projective Fraïssé limit.
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Motivation

Bing’s result may be reproved using the following.

Theorem
Let 〈X∗, f∗〉 be a sequence in I. The following conditions are
equivalent.

1 X∞ is hereditarily indecomposable.
2 X∞ is crooked.
3 The maps fn,∞ are crooked.
4 〈X∗, f∗〉 is a crooked sequence.
5 〈X∗, f∗〉 is a Fraïssé sequence.
6 X∞ is universal and almost projective in σI.
7 X∞ is universal and almost homogeneous in σI.



Crookedness

“When going from A to B, we first have to go from A near B,
then return near A, and finally go to B.”

A map f : {0, 1, . . . ,m} → {0, 1, . . . , n} is crooked if for every
i ≤ j ≤ m there are i ≤ j ′ ≤ i ′ ≤ j such that |f (i)− f (i ′)| ≤ 1
and |f (j)− f (j ′)| ≤ 1.

A map f : I→ I is ε-crooked if for every x ≤ y ∈ I there are
x ≤ y ′ ≤ x ′ ≤ y such that f (x) ≈ε f (x ′) and f (y) ≈ε f (y ′).

Fact

For every ε > 0 there is an ε-crooked
I-map (e.g. the maps σn [Lewis–Minc,
2010]).
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Crookedness – spaces

Definition [Krasinkiewicz–Minc, 1977]

Let X be a topological space.
A quadruple 〈A,B,U,V 〉 is admissible in X if A, B are disjoint
closed subsets of X and U, V are their open neighborhoods.

X is crooked at 〈A,B,U,V 〉 if there are closed sets
F0,F1,F2 ⊆ X such that A ⊆ F0, B ⊆ F2, F0 ∪ F1 ∪ F2 = X ,
F0 ∩ F1 ⊆ V , F1 ∩ F2 ⊆ U, F0 ∩ F2 = ∅,
X is crooked if it is crooked at every admissible quadruple.

Theorem [Krasinkiewicz–Minc, 1977]

A compact Hausdorff space X is hereditarily indecomposable if and
only if it is crooked.
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Crookedness – maps

Definition [Maćkowiak, 1985]

Let f : X → Y be a continuous map, 〈A,B,U,V 〉 admissible in Y .
f is crooked at 〈A,B,U,V 〉 if X is crooked at
〈f −1[A], f −1[B], f −1[U], f −1[V ]〉.
f is crooked if it is crooked at every admissible quadruple in Y.

So crookedness of X is crookedness of idX .

Definition
Let f : X → 〈Y , d〉 be a continuous map, A,B ⊆ Y closed disjoint,
and ε > 0.

f is ε-crooked at 〈A,B〉 if it is crooked at 〈A,B,Aε,Bε〉.
f is ε-crooked if it is ε-crooked at every closed disjoint 〈A,B〉.
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Crookedness

Proposition
A continuous map f : I→ 〈X , d〉 is ε-crooked if and only if it
satisfies the classical definition: for every x ≤ y ∈ I there are
x ≤ y ′ ≤ x ′ ≤ y such that f (x) ≈ε f (x ′) and f (y) ≈ε f (y ′).

Theorem
Let 〈X∗, f∗〉 be an inverse sequence of metrizable compacta and
continuous maps. The following conditions are equivalent.

1 X∞ is hereditarily indecomposable.
2 X∞ is crooked.
3 The maps fn,∞ are crooked.
4 〈X∗, f∗〉 is a crooked sequence, i.e. for every n and ε > 0 there

is m ≥ n such that fn,m is ε-crooked.

For Peano continua, this was essentially proved by [Brown, 1960].
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Fraïssé theory – almost amalgamation property

Definition
A category of compacta K has the almost amalgamation property

if for every K-maps f : X → Z and g : Y → Z and every ε > 0
there are K-maps f ′ : W → X and g ′ : W → Y such that
f ◦ f ′ ≈ε g ◦ g ′. X

Y

Z W≈ε

ε > 0

f f ′

g g ′

Fact
The interval category I has the almost amalgamation property by
the mountain climbing theorem.
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Fraïssé theory – sequences

Definition
A sequence 〈X∗, f∗〉 in a category of compacta K is

universal

if for every K-object Y there is a K-map g : Xn → Y;

X0 X1 X2 X3 X4 · · ·
f2 f3 f4f0 f1

Y

Xn· · · · · ·
fn

g

almost projective if for every K-maps f : Xn → Z , g : Y → Z
and ε > 0 there is a K-map h : Xm → Y such that
f ◦ fn,m ≈ε g ◦ h;

X0 X1
f0 f1

YZε > 0

Xn· · · · · ·
fn

f
g

Xm
≈ε

· · ·
fn,m

h

Fraïssé if it is both universal and almost projective.
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Fraïssé theory

Theorem
A category of compacta K has a Fraïssé sequence if and only if it

1 is directed,
2 has a countable universal family of objects,
3 has the almost amalgamation property.

Hence, I has a Fraïssé sequence.
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Fraïssé theory – games and uniqueness

Definition
Let K be category of compacta and let X be a compactum. The
Banach–Mazur game BMK(X ) is defined as follows. Eve starts
with a K-map f0 : X0 ← X1, Odd responds with a K-map
f1 : X1 ← X2, and so on. The outcome of the play is the sequence
〈X∗, f∗〉, and Odd wins if X∞ ∼= X . The space X is generic over K
if Odd has a winning strategy for BMK(X ).

Observation
The generic object over K is unique (if it exists).

Theorem
The limit of a Fraïssé sequence in K is generic over K. Therefore,
the Fraïssé limit is unique.
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Fraïssé theory – large objects

Definition
Let K ⊆ L be categories of compacta. An L-object X is

universal in 〈K,L〉

if for every K-object Y there is an L-map
f : X → Y ;

almost projective in 〈K,L〉 if for every
L-map f : X → Z , K-map g : Y → Z , and
ε > 0 there is an L-map h : X → Y such
that f ≈ε g ◦ h;

X
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≈ε

h

almost homogeneous in 〈K,L〉 if for every
L-maps f , g : X → Y to a K-object and
every ε > 0 there is an L-automorphism
h : X → X such that f ≈ε g ◦ h.
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Y
f g
≈ε

h

We say just “in L” instead of “in 〈L,L〉”.
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Fraïssé theory – condition (F)

Definition
Let K ⊆ L be categories of compacta. We consider the following
condition for 〈K,L〉.

(F) For every sequence 〈X∗, f∗〉 in K, every L-map g : X∞ → Y to
a K-object Y , and every ε > 0 there is a K-map g ′ : Xn → Y
such that g ≈ε g ′ ◦ fn,∞.

X0 X1 X∞

Y

f0 f1

g

X2 X3 · · ·
f2 f3Xn· · ·

≈ε

fn,∞

g ′

Fact
It follows from the result [Mardešić–Segal, 1963] that 〈I, σI〉
satisfies (F).
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Fraïssé theory

Theorem
Let K be a category of compacta such that all K-maps are
surjections, and 〈K, σK〉 satisfies (F). Then the following
conditions are equivalent.

1 〈X∗, f∗〉 is a Fraïssé sequence in K.
2 X∞ is universal and almost projective in 〈K, σK〉.
3 X∞ is universal and almost homogeneous in 〈K, σK〉.
4 X∞ is universal and almost projective in σK.
5 X∞ is universal and almost homogeneous in σK.

Hence, there is a unique Fraïssé limit in σI satisfying all the
conditions.
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The pseudo-arc

There is a Fraïssé sequence in I, and its limit is the unique
universal and almost homogeneous object in σI.

Since there is an ε-crooked I-map for every ε > 0, it follows
that any Fraïssé sequence in I is crooked, and so its limit is
hereditarily indecomposable.
By the result of Bing, the Fraïssé limit of σI is the pseudo-arc.
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The pseudo-arc

Theorem

For every I-map g and every ε > 0 there is
δ > 0 such that for every δ-crooked I-map f
there is an I-map h such that f ≈ε g ◦ h.

I

I

I≈ε

f

g h

Corollary

The almost amalgamation property of I follows from the fact
that there is an ε-crooked I-map for every ε > 0.
Every crooked sequence in I is almost projective, and hence
Fraïssé. Therefore, there is a unique hereditarily
indecomposable arc-like continuum.
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Conclusion

Theorem
Let 〈X∗, f∗〉 be a sequence in I. The following conditions are
equivalent.

1 X∞ is hereditarily indecomposable.
2 X∞ is crooked.
3 The maps fn,∞ are crooked.
4 〈X∗, f∗〉 is a crooked sequence.
5 〈X∗, f∗〉 is a Fraïssé sequence.
6 X∞ is universal and almost projective in σI.
7 X∞ is universal and almost homogeneous in σI.

Thank you for your attention.
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