Crookedness and almost homogeneity in categories of compacta

Adam Bartoš drekin@gmail.com

Faculty of Mathematics and Physics, Charles University

Institute of Mathematics, Czech Academy of Sciences

Winter School in Abstract Analysis Section Set Theory & Topology Hejnice, Jan 26 – Feb 2 2019

This is joint work with Wiesław Kubiś.

An inverse sequence ⟨X_{*}, f_{*}⟩ of topological spaces and continuous maps, and its limit ⟨X_∞, f_{n,∞}⟩_{n∈ω}:

$$X_0 \xleftarrow{f_0} X_1 \underbrace{\xleftarrow{f_1}}_{f_{1,3}} X_2 \xleftarrow{f_2}}_{f_{1,3}} X_3 \xleftarrow{f_3} \cdots X_n \underbrace{\xleftarrow{f_n}}_{f_n} X_{n+1} \xleftarrow{} X_{\infty}$$

An inverse sequence ⟨X_{*}, f_{*}⟩ of topological spaces and continuous maps, and its limit ⟨X_∞, f_{n,∞}⟩_{n∈ω}:

$$X_0 \xleftarrow{f_0} X_1 \underbrace{\xleftarrow{f_1}}_{f_{1,3}} X_2 \xleftarrow{f_2}}_{f_{1,3}} X_3 \xleftarrow{f_3} \cdots X_n \underbrace{\xleftarrow{f_n}}_{f_n} X_{n+1} \xleftarrow{} X_{\infty}$$

A category of compacta is any category *K* whose objects are metrizable compacta and whose morphisms are continuous maps. A sequence in *K* is an inverse sequence of *K*-objects and *K*-maps.

An inverse sequence (X_{*}, f_{*}) of topological spaces and continuous maps, and its limit (X_∞, f_{n,∞})_{n∈ω}:

$$X_0 \xleftarrow{f_0} X_1 \underbrace{\xleftarrow{f_1}}_{f_{1,3}} X_2 \xleftarrow{f_2}}_{f_{1,3}} X_3 \xleftarrow{f_3} \cdots X_n \underbrace{\xleftarrow{f_n}}_{f_n} X_{n+1} \xleftarrow{} X_{\infty}$$

- A category of compacta is any category *K* whose objects are metrizable compacta and whose morphisms are continuous maps. A sequence in *K* is an inverse sequence of *K*-objects and *K*-maps.
- $\sigma \mathcal{K}$ denotes the category of all limits of sequences in \mathcal{K} and all limits of *almost transformations* between sequences in \mathcal{K} .

An inverse sequence (X_{*}, f_{*}) of topological spaces and continuous maps, and its limit (X_∞, f_{n,∞})_{n∈ω}:

$$X_0 \xleftarrow{f_0} X_1 \underbrace{\xleftarrow{f_1}}_{f_{1,3}} X_2 \xleftarrow{f_2}}_{f_{1,3}} X_3 \xleftarrow{f_3} \cdots X_n \underbrace{\xleftarrow{f_n}}_{f_n} X_{n+1} \xleftarrow{} X_{\infty}$$

- A category of compacta is any category *K* whose objects are metrizable compacta and whose morphisms are continuous maps. A sequence in *K* is an inverse sequence of *K*-objects and *K*-maps.
- $\sigma \mathcal{K}$ denotes the category of all limits of sequences in \mathcal{K} and all limits of *almost transformations* between sequences in \mathcal{K} .
- *I* denotes the category with the only object I := [0, 1] and all continuous surjections.

Motivation

• A continuum X is *arc-like* if it is the limit of a sequence in \mathcal{I} : $\mathbb{I} \stackrel{f_0}{\longleftarrow} \mathbb{I} \stackrel{f_1}{\longleftarrow} \mathbb{I} \stackrel{f_2}{\longleftarrow} \mathbb{I} \stackrel{f_3}{\longleftarrow} \cdots X.$ • A continuum X is *arc-like* if it is the limit of a sequence in \mathcal{I} : $\mathbb{I} \stackrel{f_0}{\longleftarrow} \mathbb{I} \stackrel{f_1}{\longleftarrow} \mathbb{I} \stackrel{f_2}{\longleftarrow} \mathbb{I} \stackrel{f_3}{\longleftarrow} \cdots X.$

So $\sigma \mathcal{I}$ -objects are exactly the arc-like continua, and by [Mardešić–Segal, 1963], $\sigma \mathcal{I}$ -maps are all continuous surjections.

• A continuum X is *arc-like* if it is the limit of a sequence in \mathcal{I} : $\mathbb{I} \stackrel{f_0}{\longleftarrow} \mathbb{I} \stackrel{f_1}{\longleftarrow} \mathbb{I} \stackrel{f_2}{\longleftarrow} \mathbb{I} \stackrel{f_3}{\longleftarrow} \cdots X.$

So $\sigma \mathcal{I}$ -objects are exactly the arc-like continua, and by [Mardešić–Segal, 1963], $\sigma \mathcal{I}$ -maps are all continuous surjections.

A compact Hausdorff space is *hereditarily indecomposable* if for every subcontinua C, D ⊆ X we have C ⊆ D or C ⊇ D or C ∩ D = Ø. • A continuum X is *arc-like* if it is the limit of a sequence in \mathcal{I} : $\mathbb{I} \xleftarrow{f_0} \mathbb{I} \xleftarrow{f_1} \mathbb{I} \xleftarrow{f_2} \mathbb{I} \xleftarrow{f_3} \cdots X.$

So $\sigma \mathcal{I}$ -objects are exactly the arc-like continua, and by [Mardešić–Segal, 1963], $\sigma \mathcal{I}$ -maps are all continuous surjections.

A compact Hausdorff space is *hereditarily indecomposable* if for every subcontinua C, D ⊆ X we have C ⊆ D or C ⊇ D or C ∩ D = Ø.

Fact [Bing, 1951]

There exists a unique hereditarily indecomposable arc-like continuum, called the *pseudo-arc*.

Motivation

• A continuum X is *arc-like* if it is the limit of a sequence in \mathcal{I} : $\mathbb{I} \xleftarrow{f_0} \mathbb{I} \xleftarrow{f_1} \mathbb{I} \xleftarrow{f_2} \mathbb{I} \xleftarrow{f_3} \cdots X.$

So $\sigma \mathcal{I}$ -objects are exactly the arc-like continua, and by [Mardešić–Segal, 1963], $\sigma \mathcal{I}$ -maps are all continuous surjections.

A compact Hausdorff space is *hereditarily indecomposable* if for every subcontinua C, D ⊆ X we have C ⊆ D or C ⊇ D or C ∩ D = Ø.

Fact [Bing, 1951]

There exists a unique hereditarily indecomposable arc-like continuum, called the *pseudo-arc*.

Fact [Irwin–Solecki, 2006]

The pseudo-arc is the quotient induced by a topological model-theoretic projective *Fraïssé limit*.

Bing's result may be reproved using the following.

Theorem

Let $\langle X_*, f_* \rangle$ be a sequence in \mathcal{I} . The following conditions are equivalent.

- **1** X_{∞} is hereditarily indecomposable.
- **2** X_{∞} is crooked.
- **3** The maps $f_{n,\infty}$ are *crooked*.
- 4 $\langle X_*, f_* \rangle$ is a crooked sequence.
- 5 $\langle X_*, f_* \rangle$ is a *Fraïssé sequence*.
- **6** X_{∞} is *universal* and *almost projective* in $\sigma \mathcal{I}$.
- **7** X_{∞} is universal and almost homogeneous in $\sigma \mathcal{I}$.

"When going from A to B, we first have to go from A near B, then return near A, and finally go to B."

- "When going from A to B, we first have to go from A near B, then return near A, and finally go to B."
- A map $f: \{0, 1, \ldots, m\} \rightarrow \{0, 1, \ldots, n\}$ is crooked if for every $i \leq j \leq m$ there are $i \leq j' \leq i' \leq j$ such that $|f(i) f(i')| \leq 1$ and $|f(j) f(j')| \leq 1$.

- "When going from A to B, we first have to go from A near B, then return near A, and finally go to B."
- A map $f: \{0, 1, \ldots, m\} \rightarrow \{0, 1, \ldots, n\}$ is *crooked* if for every $i \leq j \leq m$ there are $i \leq j' \leq i' \leq j$ such that $|f(i) f(i')| \leq 1$ and $|f(j) f(j')| \leq 1$.
- A map $f: \mathbb{I} \to \mathbb{I}$ is ε -crooked if for every $x \le y \in \mathbb{I}$ there are $x \le y' \le x' \le y$ such that $f(x) \approx_{\varepsilon} f(x')$ and $f(y) \approx_{\varepsilon} f(y')$.

- "When going from A to B, we first have to go from A near B, then return near A, and finally go to B."
- A map $f: \{0, 1, \ldots, m\} \rightarrow \{0, 1, \ldots, n\}$ is *crooked* if for every $i \leq j \leq m$ there are $i \leq j' \leq i' \leq j$ such that $|f(i) f(i')| \leq 1$ and $|f(j) f(j')| \leq 1$.
- A map $f: \mathbb{I} \to \mathbb{I}$ is ε -crooked if for every $x \le y \in \mathbb{I}$ there are $x \le y' \le x' \le y$ such that $f(x) \approx_{\varepsilon} f(x')$ and $f(y) \approx_{\varepsilon} f(y')$.

Fact

For every $\varepsilon > 0$ there is an ε -crooked \mathcal{I} -map (e.g. the maps σ_n [Lewis–Minc, 2010]).

Let X be a topological space.

■ A quadruple (*A*, *B*, *U*, *V*) is *admissible in X* if *A*, *B* are disjoint closed subsets of *X* and *U*, *V* are their open neighborhoods.

Let X be a topological space.

- A quadruple (*A*, *B*, *U*, *V*) is *admissible in X* if *A*, *B* are disjoint closed subsets of *X* and *U*, *V* are their open neighborhoods.
- X is crooked at $\langle A, B, U, V \rangle$ if there are closed sets $F_0, F_1, F_2 \subseteq X$ such that $A \subseteq F_0, B \subseteq F_2, F_0 \cup F_1 \cup F_2 = X$, $F_0 \cap F_1 \subseteq V, F_1 \cap F_2 \subseteq U, F_0 \cap F_2 = \emptyset$,

Let X be a topological space.

- A quadruple (*A*, *B*, *U*, *V*) is *admissible in X* if *A*, *B* are disjoint closed subsets of *X* and *U*, *V* are their open neighborhoods.
- X is crooked at $\langle A, B, U, V \rangle$ if there are closed sets $F_0, F_1, F_2 \subseteq X$ such that $A \subseteq F_0, B \subseteq F_2, F_0 \cup F_1 \cup F_2 = X$, $F_0 \cap F_1 \subseteq V, F_1 \cap F_2 \subseteq U, F_0 \cap F_2 = \emptyset$,

• X is crooked if it is crooked at every admissible quadruple.

Let X be a topological space.

- A quadruple (*A*, *B*, *U*, *V*) is *admissible in X* if *A*, *B* are disjoint closed subsets of *X* and *U*, *V* are their open neighborhoods.
- X is crooked at $\langle A, B, U, V \rangle$ if there are closed sets $F_0, F_1, F_2 \subseteq X$ such that $A \subseteq F_0, B \subseteq F_2, F_0 \cup F_1 \cup F_2 = X$, $F_0 \cap F_1 \subseteq V, F_1 \cap F_2 \subseteq U, F_0 \cap F_2 = \emptyset$,
- X is crooked if it is crooked at every admissible quadruple.

Theorem [Krasinkiewicz–Minc, 1977]

A compact Hausdorff space X is hereditarily indecomposable if and only if it is crooked.

Definition [Maćkowiak, 1985]

Let $f: X \to Y$ be a continuous map, $\langle A, B, U, V \rangle$ admissible in Y.

•
$$f$$
 is crooked at $\langle A, B, U, V \rangle$ if X is crooked at $\langle f^{-1}[A], f^{-1}[B], f^{-1}[U], f^{-1}[V] \rangle$.

• *f* is *crooked* if it is crooked at every admissible quadruple in *Y*.

So crookedness of X is crookedness of id_X .

Definition [Maćkowiak, 1985]

Let $f: X \to Y$ be a continuous map, $\langle A, B, U, V \rangle$ admissible in Y.

- f is crooked at $\langle A, B, U, V \rangle$ if X is crooked at $\langle f^{-1}[A], f^{-1}[B], f^{-1}[U], f^{-1}[V] \rangle$.
- *f* is *crooked* if it is crooked at every admissible quadruple in *Y*.

So crookedness of X is crookedness of id_X .

Definition

Let $f: X \to \langle Y, d \rangle$ be a continuous map, $A, B \subseteq Y$ closed disjoint, and $\varepsilon > 0$.

- *f* is ε -crooked at $\langle A, B \rangle$ if it is crooked at $\langle A, B, A^{\varepsilon}, B^{\varepsilon} \rangle$.
- f is ε -crooked if it is ε -crooked at every closed disjoint $\langle A, B \rangle$.

Proposition

A continuous map $f: \mathbb{I} \to \langle X, d \rangle$ is ε -crooked if and only if it satisfies the classical definition: for every $x \leq y \in \mathbb{I}$ there are $x \leq y' \leq x' \leq y$ such that $f(x) \approx_{\varepsilon} f(x')$ and $f(y) \approx_{\varepsilon} f(y')$.

Proposition

A continuous map $f: \mathbb{I} \to \langle X, d \rangle$ is ε -crooked if and only if it satisfies the classical definition: for every $x \leq y \in \mathbb{I}$ there are $x \leq y' \leq x' \leq y$ such that $f(x) \approx_{\varepsilon} f(x')$ and $f(y) \approx_{\varepsilon} f(y')$.

Theorem

Let $\langle X_*, f_* \rangle$ be an inverse sequence of metrizable compacta and continuous maps. The following conditions are equivalent.

- **1** X_{∞} is hereditarily indecomposable.
- **2** X_{∞} is crooked.
- **3** The maps $f_{n,\infty}$ are crooked.
- (X_{*}, f_{*}) is a *crooked sequence*, i.e. for every *n* and ε > 0 there is m ≥ n such that f_{n,m} is ε-crooked.

Proposition

A continuous map $f: \mathbb{I} \to \langle X, d \rangle$ is ε -crooked if and only if it satisfies the classical definition: for every $x \leq y \in \mathbb{I}$ there are $x \leq y' \leq x' \leq y$ such that $f(x) \approx_{\varepsilon} f(x')$ and $f(y) \approx_{\varepsilon} f(y')$.

Theorem

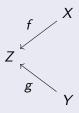
Let $\langle X_*, f_* \rangle$ be an inverse sequence of metrizable compacta and continuous maps. The following conditions are equivalent.

- **1** X_{∞} is hereditarily indecomposable.
- **2** X_{∞} is crooked.
- **3** The maps $f_{n,\infty}$ are crooked.
- (X_{*}, f_{*}) is a *crooked sequence*, i.e. for every *n* and ε > 0 there is *m* ≥ *n* such that f_{n,m} is ε-crooked.

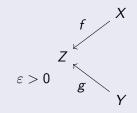
For Peano continua, this was essentially proved by [Brown, 1960].

A category of compacta ${\cal K}$ has the almost amalgamation property

A category of compacta \mathcal{K} has the *almost amalgamation property* if for every \mathcal{K} -maps $f: X \to Z$ and $g: Y \to Z$



A category of compacta \mathcal{K} has the *almost amalgamation property* if for every \mathcal{K} -maps $f: X \to Z$ and $g: Y \to Z$ and every $\varepsilon > 0$



A category of compacta \mathcal{K} has the almost amalgamation property if for every \mathcal{K} -maps $f: X \to Z$ and $g: Y \to Z$ and every $\varepsilon > 0$ there are \mathcal{K} -maps $f': W \to X$ and $g': W \to Y$ such that $f \circ f' \approx_{\varepsilon} g \circ g'$.

A category of compacta \mathcal{K} has the almost amalgamation property if for every \mathcal{K} -maps $f: X \to Z$ and $g: Y \to Z$ and every $\varepsilon > 0$ there are \mathcal{K} -maps $f': W \to X$ and $g': W \to Y$ such that $f \circ f' \approx_{\varepsilon} g \circ g'$.

Fact

The interval category ${\cal I}$ has the almost amalgamation property by the mountain climbing theorem.

Definition

A sequence $\langle X_*, f_* \rangle$ in a category of compacta ${\mathcal K}$ is

universal

Definition

A sequence $\langle X_*, f_* \rangle$ in a category of compacta ${\mathcal K}$ is

• *universal* if for every \mathcal{K} -object Y

$$X_0 \xleftarrow{f_0} X_1 \xleftarrow{f_1} X_2 \xleftarrow{f_2} X_3 \xleftarrow{f_3} X_4 \xleftarrow{f_4} \cdots$$

Υ

Definition

A sequence $\langle X_*, f_*
angle$ in a category of compacta ${\mathcal K}$ is

• *universal* if for every \mathcal{K} -object Y there is a \mathcal{K} -map $g: X_n \to Y$;

$$X_0 \xleftarrow{f_0} X_1 \xleftarrow{f_1} \cdots \xleftarrow{g} X_n \xleftarrow{f_n} \cdots$$

Definition

A sequence $\langle X_*, f_*
angle$ in a category of compacta ${\mathcal K}$ is

• *universal* if for every \mathcal{K} -object Y there is a \mathcal{K} -map $g: X_n \to Y$;

$$X_0 \xleftarrow{f_0} X_1 \xleftarrow{f_1} \cdots \xleftarrow{} X_n \xleftarrow{f_n} \cdots$$

almost projective

Definition

A sequence $\langle X_*, f_*
angle$ in a category of compacta ${\mathcal K}$ is

• *universal* if for every \mathcal{K} -object Y there is a \mathcal{K} -map $g: X_n \to Y$;

$$X_0 \xleftarrow{f_0} X_1 \xleftarrow{f_1} \cdots \xleftarrow{g} X_n \xleftarrow{f_n} \cdots$$

 almost projective if for every *K*-maps f: X_n → Z, g: Y → Z and ε > 0

$$X_{0} \xleftarrow{f_{0}} X_{1} \xleftarrow{f_{1}} \cdots \xleftarrow{X_{n}} X_{n} \xleftarrow{f_{n}} \cdots$$

$$\varepsilon > 0 \qquad Z \xleftarrow{g} Y$$

Definition

A sequence $\langle X_*, f_*
angle$ in a category of compacta ${\mathcal K}$ is

• *universal* if for every \mathcal{K} -object Y there is a \mathcal{K} -map $g: X_n \to Y$;

$$X_0 \xleftarrow{f_0} X_1 \xleftarrow{f_1} \cdots \xleftarrow{g} X_n \xleftarrow{f_n} \cdots$$

■ almost projective if for every \mathcal{K} -maps $f: X_n \to Z$, $g: Y \to Z$ and $\varepsilon > 0$ there is a \mathcal{K} -map $h: X_m \to Y$ such that $f \circ f_{n,m} \approx_{\varepsilon} g \circ h$;

$$X_{0} \xleftarrow{f_{0}} X_{1} \xleftarrow{f_{1}} \cdots \xleftarrow{X_{n}} X_{n} \xleftarrow{f_{n,m}} X_{m} \xrightarrow{f_{n,m}} X_{m} \xleftarrow{f_{n,m}} X_{m} \xrightarrow{f_{n,m}} X_{m} \xrightarrow{f_{n,m$$

Definition

A sequence $\langle X_*, f_*
angle$ in a category of compacta ${\mathcal K}$ is

• *universal* if for every \mathcal{K} -object Y there is a \mathcal{K} -map $g: X_n \to Y$;

$$X_0 \xleftarrow{f_0} X_1 \xleftarrow{f_1} \cdots \xleftarrow{g} X_n \xleftarrow{f_n} \cdots$$

■ almost projective if for every \mathcal{K} -maps $f: X_n \to Z$, $g: Y \to Z$ and $\varepsilon > 0$ there is a \mathcal{K} -map $h: X_m \to Y$ such that $f \circ f_{n,m} \approx_{\varepsilon} g \circ h$;

$$X_{0} \xleftarrow{f_{0}} X_{1} \xleftarrow{f_{1}} \cdots \xleftarrow{X_{n}} X_{n} \xleftarrow{f_{n,m}} X_{m} \xleftarrow{} \cdots$$

$$\varepsilon > 0 \qquad Z \xleftarrow{f_{g}} Y \xrightarrow{\varepsilon} h$$

Fraïssé if it is both universal and almost projective.

A category of compacta ${\mathcal K}$ has a Fraïssé sequence if and only if it

- 1 is directed,
- 2 has a countable *universal family of objects*,
- 3 has the almost amalgamation property.

A category of compacta ${\mathcal K}$ has a Fraïssé sequence if and only if it

- 1 is directed,
- 2 has a countable *universal family of objects*,
- **3** has the almost amalgamation property.

Hence, \mathcal{I} has a Fraïssé sequence.

Let \mathcal{K} be category of compacta and let X be a compactum. The Banach-Mazur game $BM_{\mathcal{K}}(X)$ is defined as follows. Eve starts with a \mathcal{K} -map $f_0: X_0 \leftarrow X_1$, Odd responds with a \mathcal{K} -map $f_1: X_1 \leftarrow X_2$, and so on. The outcome of the play is the sequence $\langle X_*, f_* \rangle$, and Odd wins if $X_{\infty} \cong X$. The space X is generic over \mathcal{K} if Odd has a winning strategy for $BM_{\mathcal{K}}(X)$.

Let \mathcal{K} be category of compacta and let X be a compactum. The Banach-Mazur game $BM_{\mathcal{K}}(X)$ is defined as follows. Eve starts with a \mathcal{K} -map $f_0: X_0 \leftarrow X_1$, Odd responds with a \mathcal{K} -map $f_1: X_1 \leftarrow X_2$, and so on. The outcome of the play is the sequence $\langle X_*, f_* \rangle$, and Odd wins if $X_{\infty} \cong X$. The space X is generic over \mathcal{K} if Odd has a winning strategy for $BM_{\mathcal{K}}(X)$.

Observation

The generic object over \mathcal{K} is unique (if it exists).

Let \mathcal{K} be category of compacta and let X be a compactum. The Banach-Mazur game $BM_{\mathcal{K}}(X)$ is defined as follows. Eve starts with a \mathcal{K} -map $f_0: X_0 \leftarrow X_1$, Odd responds with a \mathcal{K} -map $f_1: X_1 \leftarrow X_2$, and so on. The outcome of the play is the sequence $\langle X_*, f_* \rangle$, and Odd wins if $X_{\infty} \cong X$. The space X is generic over \mathcal{K} if Odd has a winning strategy for $BM_{\mathcal{K}}(X)$.

Observation

The generic object over \mathcal{K} is unique (if it exists).

Theorem

The limit of a Fraïssé sequence in \mathcal{K} is generic over \mathcal{K} . Therefore, the *Fraïssé limit* is unique.

Definition

Let $\mathcal{K} \subseteq \mathcal{L}$ be categories of compacta. An \mathcal{L} -object X is

• universal in $\langle \mathcal{K}, \mathcal{L} \rangle$

Definition

Let $\mathcal{K} \subseteq \mathcal{L}$ be categories of compacta. An \mathcal{L} -object X is

• *universal in* $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K} -object Y there is an \mathcal{L} -map $f: X \to Y$;

Definition

- *universal in* $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K} -object Y there is an \mathcal{L} -map $f: X \to Y$;
- almost projective in $\langle \mathcal{K}, \mathcal{L} \rangle$

Definition

- *universal in* $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K} -object Y there is an \mathcal{L} -map $f: X \to Y$;
- almost projective in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every X \mathcal{L} -map $f: X \to Z$, \mathcal{K} -map $g: Y \to Z$, and f $\varepsilon > 0$ $Z \longleftarrow Y$

Definition

- *universal in* $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K} -object Y there is an \mathcal{L} -map $f: X \to Y$:
- almost projective in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every $\mathcal{L}\text{-map } f: X \to Z, \ \mathcal{K}\text{-map } g: Y \to Z, \text{ and } f \land h \\ \varepsilon > 0 \text{ there is an } \mathcal{L}\text{-map } h: X \to Y \text{ such } f \land \varepsilon \varepsilon \land y \\ \text{that } f \approx_{\varepsilon} g \circ h: f \land \zeta \to Y \text{ such } f \land \varepsilon \varepsilon \land y \\ \text{that } f \approx_{\varepsilon} g \circ h: f \land \zeta \to Y \text{ such } f \to Y \text{ su$ that $f \approx_{\varepsilon} g \circ h$;

Definition

Let $\mathcal{K} \subseteq \mathcal{L}$ be categories of compacta. An \mathcal{L} -object X is

- *universal in* $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K} -object Y there is an \mathcal{L} -map $f: X \to Y$:
- almost projective in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every almost projective in $(\mathcal{K}, \mathcal{L})$ in for every \mathcal{L} -map $f: X \to Z$, \mathcal{K} -map $g: Y \to Z$, and $f / \swarrow h$ $\varepsilon > 0$ there is an \mathcal{L} -map $h: X \to Y$ such $Z \leftarrow \Box_X$ that $f \approx_{\varepsilon} g \circ h$;

• almost homogeneous in $\langle \mathcal{K}, \mathcal{L} \rangle$

Definition

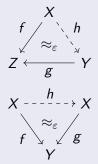
Let $\mathcal{K} \subseteq \mathcal{L}$ be categories of compacta. An \mathcal{L} -object X is

- *universal in* $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K} -object Y there is an \mathcal{L} -map $f: X \to Y$:
- almost projective in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every $\begin{array}{c} \text{almost projective in } \langle \mathcal{K}, \mathcal{L} \rangle \text{ in for every} \\ \mathcal{L}\text{-map } f: X \to Z, \ \mathcal{K}\text{-map } g: Y \to Z, \ \text{and} \quad \begin{array}{c} f \\ \swarrow & \ddots \\ \approx \varepsilon \\ \sim \end{array} \\ \varepsilon > 0 \text{ there is an } \mathcal{L}\text{-map } h: X \to Y \text{ such} \end{array}$ that $f \approx_{\varepsilon} g \circ h$;

• almost homogeneous in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{L} -maps $f, g: X \to Y$ to a \mathcal{K} -object and every $\varepsilon > 0$

Definition

- universal in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K} -object Y there is an \mathcal{L} -map $f: X \to Y$;
- almost projective in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every X \mathcal{L} -map $f: X \to Z$, \mathcal{K} -map $g: Y \to Z$, and $f \nearrow h$ $\varepsilon > 0$ there is an \mathcal{L} -map $h: X \to Y$ such $Z \xleftarrow{g} Y$
- almost homogeneous in ⟨𝔅, 𝔅⟩ if for every *L*-maps *f*, *g* : *X* → *Y* to a -object and every ε > 0 there is an -automorphism *h* : *X* → *X* such that *f* ≈_ε *g* ◦ *h*.



Definition

Let $\mathcal{K} \subseteq \mathcal{L}$ be categories of compacta. An \mathcal{L} -object X is

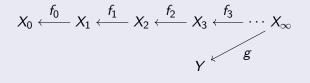
- universal in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K} -object Y there is an \mathcal{L} -map $f: X \to Y$;
- almost projective in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every X \mathcal{L} -map $f: X \to Z$, \mathcal{K} -map $g: Y \to Z$, and $f / \frown h$ $\varepsilon > 0$ there is an \mathcal{L} -map $h: X \to Y$ such that $f \approx_{\varepsilon} g \circ h$; $Z \leftarrow g$
- almost homogeneous in ⟨𝔅, 𝔅⟩ if for every *L*-maps *f*, *g*: *X* → *Y* to a -object and every ε > 0 there is an -automorphism *h*: *X* → *X* such that *f* ≈_ε *g* ◦ *h*.

We say just "in \mathcal{L} " instead of "in $\langle \mathcal{L}, \mathcal{L} \rangle$ ".

Let $\mathcal{K} \subseteq \mathcal{L}$ be categories of compacta. We consider the following condition for $\langle \mathcal{K}, \mathcal{L} \rangle$.

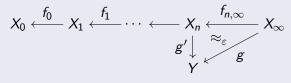
Let $\mathcal{K} \subseteq \mathcal{L}$ be categories of compacta. We consider the following condition for $\langle \mathcal{K}, \mathcal{L} \rangle$.

(F) For every sequence $\langle X_*, f_* \rangle$ in \mathcal{K} , every \mathcal{L} -map $g : X_{\infty} \to Y$ to a \mathcal{K} -object Y, and every $\varepsilon > 0$



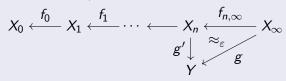
Let $\mathcal{K} \subseteq \mathcal{L}$ be categories of compacta. We consider the following condition for $\langle \mathcal{K}, \mathcal{L} \rangle$.

(F) For every sequence $\langle X_*, f_* \rangle$ in \mathcal{K} , every \mathcal{L} -map $g : X_{\infty} \to Y$ to a \mathcal{K} -object Y, and every $\varepsilon > 0$ there is a \mathcal{K} -map $g' : X_n \to Y$ such that $g \approx_{\varepsilon} g' \circ f_{n,\infty}$.



Let $\mathcal{K} \subseteq \mathcal{L}$ be categories of compacta. We consider the following condition for $\langle \mathcal{K}, \mathcal{L} \rangle$.

(F) For every sequence $\langle X_*, f_* \rangle$ in \mathcal{K} , every \mathcal{L} -map $g : X_{\infty} \to Y$ to a \mathcal{K} -object Y, and every $\varepsilon > 0$ there is a \mathcal{K} -map $g' : X_n \to Y$ such that $g \approx_{\varepsilon} g' \circ f_{n,\infty}$.



Fact

It follows from the result [Mardešić–Segal, 1963] that $\langle \mathcal{I},\sigma\mathcal{I}\rangle$ satisfies (F).

Let \mathcal{K} be a category of compacta such that all \mathcal{K} -maps are surjections, and $\langle \mathcal{K}, \sigma \mathcal{K} \rangle$ satisfies (F). Then the following conditions are equivalent.

1 $\langle X_*, f_* \rangle$ is a Fraïssé sequence in \mathcal{K} .

- **1** $\langle X_*, f_* \rangle$ is a Fraïssé sequence in \mathcal{K} .
- **2** X_{∞} is universal and almost projective in $\langle \mathcal{K}, \sigma \mathcal{K} \rangle$.

- **1** $\langle X_*, f_* \rangle$ is a Fraïssé sequence in \mathcal{K} .
- **2** X_{∞} is universal and almost projective in $\langle \mathcal{K}, \sigma \mathcal{K} \rangle$.
- **3** X_{∞} is universal and almost homogeneous in $\langle \mathcal{K}, \sigma \mathcal{K} \rangle$.

- **1** $\langle X_*, f_* \rangle$ is a Fraïssé sequence in \mathcal{K} .
- **2** X_{∞} is universal and almost projective in $\langle \mathcal{K}, \sigma \mathcal{K} \rangle$.
- **3** X_{∞} is universal and almost homogeneous in $\langle \mathcal{K}, \sigma \mathcal{K} \rangle$.
- **4** X_{∞} is universal and almost projective in $\sigma \mathcal{K}$.
- **5** X_{∞} is universal and almost homogeneous in $\sigma \mathcal{K}$.

Let \mathcal{K} be a category of compacta such that all \mathcal{K} -maps are surjections, and $\langle \mathcal{K}, \sigma \mathcal{K} \rangle$ satisfies (F). Then the following conditions are equivalent.

- **1** $\langle X_*, f_* \rangle$ is a Fraïssé sequence in \mathcal{K} .
- **2** X_{∞} is universal and almost projective in $\langle \mathcal{K}, \sigma \mathcal{K} \rangle$.
- **3** X_{∞} is universal and almost homogeneous in $\langle \mathcal{K}, \sigma \mathcal{K} \rangle$.
- **4** X_{∞} is universal and almost projective in $\sigma \mathcal{K}$.
- **5** X_{∞} is universal and almost homogeneous in $\sigma \mathcal{K}$.

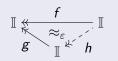
Hence, there is a unique Fraïssé limit in $\sigma\mathcal{I}$ satisfying all the conditions.

There is a Fraïssé sequence in *I*, and its limit is the unique universal and almost homogeneous object in *σI*.

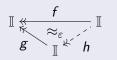
- There is a Fraïssé sequence in *I*, and its limit is the unique universal and almost homogeneous object in *σI*.
- Since there is an ε-crooked *I*-map for every ε > 0, it follows that any Fraïssé sequence in *I* is crooked, and so its limit is hereditarily indecomposable.

- There is a Fraïssé sequence in *I*, and its limit is the unique universal and almost homogeneous object in *σI*.
- Since there is an ε-crooked *I*-map for every ε > 0, it follows that any Fraïssé sequence in *I* is crooked, and so its limit is hereditarily indecomposable.
- By the result of Bing, the Fraïssé limit of $\sigma \mathcal{I}$ is the pseudo-arc.

For every \mathcal{I} -map g and every $\varepsilon > 0$ there is $\delta > 0$ such that for every δ -crooked \mathcal{I} -map f there is an \mathcal{I} -map h such that $f \approx_{\varepsilon} g \circ h$.



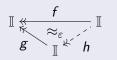
For every \mathcal{I} -map g and every $\varepsilon > 0$ there is $\delta > 0$ such that for every δ -crooked \mathcal{I} -map f there is an \mathcal{I} -map h such that $f \approx_{\varepsilon} g \circ h$.



Corollary

The almost amalgamation property of *I* follows from the fact that there is an *ε*-crooked *I*-map for every *ε* > 0.

For every \mathcal{I} -map g and every $\varepsilon > 0$ there is $\delta > 0$ such that for every δ -crooked \mathcal{I} -map f there is an \mathcal{I} -map h such that $f \approx_{\varepsilon} g \circ h$.



Corollary

- The almost amalgamation property of *I* follows from the fact that there is an *ε*-crooked *I*-map for every *ε* > 0.
- Every crooked sequence in *I* is almost projective, and hence Fraïssé. Therefore, there is a unique hereditarily indecomposable arc-like continuum.

Let $\langle X_*, f_* \rangle$ be a sequence in \mathcal{I} . The following conditions are equivalent.

- **1** X_{∞} is hereditarily indecomposable.
- **2** X_{∞} is crooked.
- **3** The maps $f_{n,\infty}$ are crooked.
- 4 $\langle X_*, f_* \rangle$ is a crooked sequence.
- 5 $\langle X_*, f_* \rangle$ is a Fraïssé sequence.
- **6** X_{∞} is universal and almost projective in $\sigma \mathcal{I}$.
- **7** X_{∞} is universal and almost homogeneous in $\sigma \mathcal{I}$.

Let $\langle X_*, f_*\rangle$ be a sequence in $\mathcal I.$ The following conditions are equivalent.

- **1** X_{∞} is hereditarily indecomposable.
- **2** X_{∞} is crooked.
- **3** The maps $f_{n,\infty}$ are crooked.
- 4 $\langle X_*, f_* \rangle$ is a crooked sequence.
- 5 $\langle X_*, f_* \rangle$ is a Fraïssé sequence.
- **6** X_{∞} is universal and almost projective in $\sigma \mathcal{I}$.
- **7** X_{∞} is universal and almost homogeneous in $\sigma \mathcal{I}$.

Thank you for your attention.